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ABSTRACT

Context. The Swift discovery of the short burst GRB 090510 has raised considerable attention mainly because of two reasons: first,
it had a bright optical afterglow, and second it is among the most energetic events detected so far within the entire GRB population
(long plus short). The afterglow of GRB 090510 was observed with Swift/UVOT and Swift/XRT and evidence of a jet break around
1.5 ks after the burst has been reported in the literature, implying that after this break the optical and X-ray light curve should fade
with the same decay slope.
Aims. As noted by several authors, the post-break decay slope seen in the UVOT data is much shallower than the steep decay in the
X-ray band, pointing to a (theoretically hard to understand) excess of optical flux at late times. We assess here the validity of this
peculiar behavior.
Methods. We reduced and analyzed new afterglow light-curve data obtained with the multichannel imager GROND. These additional
g′r′i′z′ data were then combined with the UVOT and XRT data to study the behavior of the afterglow at late times more stringently.
Results. Based on the densely sampled data set obtained with GROND, we find that the optical afterglow of GRB 090510 did indeed
enter a steep decay phase starting around 22 ks after the burst. During this time the GROND optical light curve is achromatic, and
its slope is identical to the slope of the X-ray data. In combination with the UVOT data this implies that a second break must have
occurred in the optical light curve around 22 ks post burst, which, however, has no obvious counterpart in the X-ray band, contradicting
the interpretation that this could be another jet break.
Conclusions. The GROND data provide the missing piece of evidence that the optical afterglow of GRB 090510 did follow a post-jet
break evolution at late times. The break seen in the optical light curve around 22 ks in combination with its missing counterpart in the
X-ray band could be due to the passage of the injection frequency across the optical bands, as already theoretically proposed in the
literature. This is possibly the first time that this passage has been clearly seen in an optical afterglow. In addition, our results imply
that there is no more evidence for an excess of flux in the optical bands at late times.

Key words. gamma-ray burst: individual: GRB 090510

1. Introduction

After the first GRB was discovered in 1967 (Klebesadel et al.
1973), GRB research has evolved rapidly. In the early 1990s it
became clear that GRBs come in two flavors, long and short,
with the borderline around 2 s (Kouveliotou et al. 1993). Thanks
to three generations of high-energy satellites, BeppoSAX (Piro
et al. 1998), HETE-2 (Ricker 2002), and Swift (Gehrels et al.
2004), it is now known that long GRBs are linked to the core
collapse of massive stars (Woosley & Bloom 2006), while short
bursts are most likely linked to compact stellar mergers in all

� Appendix A is available in electronic form at
http://www.aanda.org

morphological types of galaxies (Nakar 2007; Fong et al. 2010).
Short bursts are much less frequently observed than long GRBs
so that our knowledge about short burst progenitors is much less
complete.

Since mid-2007 our group operates the seven-band imager
GROND mounted at the 2.2 m ESO/MPG telescope on La Silla,
especially designed for GRB follow-up observations (Greiner
et al. 2008). Every observable burst is followed with delay times
down to 2.5 min between the GRB trigger and the first exposure.

GRB 090510 triggered Swift/BAT (Hoversten et al. 2009a)
and Fermi/GBM (Guiriec et al. 2009) on 10 May 2009 at
00:23:00 UT, as well as Fermi/LAT at 00:23:01 UT (Ohno &
Pelassa 2009). In the Swift/BAT energy window it had a duration
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Fig. 1. GROND (g′r′i′z′) white band finding chart of the afterglow of GRB 090510. Left: the afterglow plus its host galaxy on the night of the burst
between 22 ks and 36 ks after the trigger. The afterglow flux dominates the western part of its host galaxy. (North is up and east is to the left.)
Middle: in the second night the afterglow faded away, with only the host galaxy visible. Right: image subtraction between the first and the second
epoch white band image clearly revealing the afterglow. The circle with a radius of 10′′ , centered on the position of the afterglow, is just drawn to
guide the eye.

of T90 [15, 350 keV] = 0.3 ± 0.1 s (Hoversten et al. 2009b).
Swift/XRT started observing the field about 94 s after the trigger
and the X-ray afterglow was immediately found (Hoversten et al.
2009a). Swift/UVOT began observations shortly after the XRT,
and an optical afterglow candidate was also seen (Marshall &
Hoversten 2009; Kuin & Hoversten 2009), which was soon con-
firmed by the Nordic Optical Telescope (Olofsson et al. 2009)
and by GROND (Olivares et al. 2009). The redshift of its under-
lying host galaxy was finally measured using VLT/FORS2 about
2.3 days after the trigger (z = 0.903; Rau et al. 2009; McBreen
et al. 2010).

GRB 090510 is not only one of the few short bursts with a
clear afterglow detection in the optical bands, but it is also es-
pecially unique because it is among the most energetic events
detected so far in the entire GRB population (long plus short). In
particular, a 31 GeV photon from this burst (Abdo et al. 2009)
is the second highest energy photon ever received from a GRB
(see Fig. 5 in Piron & Connaughton 2011). Naturally, the after-
glow of GRB 090510 was of special interest, too. Remarkably,
all studies of its afterglow (see Sect. 3.3) agree on one point:
when compared to its X-ray light curve, its computed late-time
decay slope in the UVOT white band is difficult to understand
within the framework of the standard afterglow model.

Here we present additional photometry of the optical after-
glow of GRB 090510 obtained with GROND from about 22 ks
to 36 ks after the burst, leading to a re-evaluation of its late-time
evolution.

2. Observations and data reduction

GROND started observing the field 6.2 h after the burst
and continued for 3.5 h. Owing to visibility constraints from
ESO/La Silla, GROND could not be on target earlier. The fol-
lowing night, the field was observed again with GROND for
1.5 h. Data was reduced in a standard fashion via standard PSF
photometry using DAOPHOT and ALLSTAR tasks under IRAF
(Tody 1993), similar to the procedure described in Krühler et al.
(2008) and Yoldaş et al. (2008). Calibrations were performed
against the SDSS1. Magnitudes were corrected for Galactic ex-
tinction, assuming E(B − V) = 0.02 mag (Schlegel et al. 1998)
and a ratio of total-to-selective extinction of RV = 3.1.

1 http://www.sdss.org/dr7/

3. Results and discussion

3.1. The afterglow light curve

The first night, the GRB host galaxy is clearly visible in the
optical images, with the afterglow light dominating its west-
ern part (Fig. 1). While on the first night the afterglow was de-
tected in g′r′i′z′ but not in JHKs, and the second night there
was no sign of an afterglow in any band, except the host galaxy.
Image subtraction clearly reveals the afterglow between the first-
and the second-epoch of the combined g′r′i′z′ images using
HOTPANTS2. Its coordinates measured against the USNO-B1
catalog are RA (J2000)= 22:14:12.53, Dec=−26:34:59.0, with
an error of 0.′′2 in each coordinate. The afterglow lies about 1.′′2
west of the center of its host galaxy (see also McBreen et al.
2010).

During the first night, GROND detected the fading afterglow
in all optical bands (Fig. 2, Table A.1). For this timespan, from
22 ks to 36 ks, the r′-band light curve can be fit by a single power
law with a slope of αopt = 2.37±0.29 (χ2

red = 0.49; 23 degrees of
freedom)3. This slope also fits the g′i′z′ band data; i.e., the evo-
lution of the optical afterglow was achromatic4. Within its 1σ er-
ror, it also matches the late-time decay slope of the X-ray after-
glow (αX = 2.18 ± 0.10; De Pasquale et al. 2010). The obtained
decay slope is substantially different from what is reported by
De Pasquale et al. (2010) based on Swift/UVOT data.

3.2. The SED of the afterglow

The X-ray data for t < 20 ks lead to a time-averaged spectral
slope of βX = 0.8 ± 0.1, while the X-ray data for t > 20 ks give
βX = 1.4± 0.7 (see the Swift/XRT repository, Evans et al. 2007).
The XRT data are therefore consistent with having a spectral
index of βX = 0.8 throughout the observations. This suggests
that the cooling frequency νc lies above the X-ray band in the
whole X-ray data set (De Pasquale et al. 2010).

2 http://www.astro.washington.edu/users/becker/
hotpants.html
3 In the following we use the standard notation for the flux density,
Fν(t) ∝ t−α ν−β.
4 A joint fit leads to the same conclusion but has a slightly higher χ2

red
of 0.59.
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Fig. 2. GROND g′r′i′z′-band light curves of the afterglow of
GRB 090510 (from bottom to top). For reasons of clarity the g′, i′, z′
bands were shifted by +1.4,−1.0,−2.0 mag, respectively. The solid
straight line is the best fit of the r′-band data, and the broken lines are its
corresponding shifts to the other bands. Shown are all data points with
a 1σ error of �0.35 mag (see Table A.1).

Figure 3 shows the best SED fit from the optical to the
X-rays using NGal

H = 1.7 × 1020 cm−2 (Kalberla et al. 2005).
For SMC dust and a redshift of z = 0.903, it finds a host
galaxy extinction of Ahost

V = 0.17+0.21
−0.17 mag, a gas column den-

sity of Nhost
H = 0.05+0.15

−0.05 × 1022 cm−2, and a spectral slope of
βopt = 0.85 ± 0.05 (χ2/d.o.f.= 0.93).

3.3. What the second light curve break represents

As pointed out by several authors, the optical light-curve fit
based on UVOT data is difficult to understand when compared
to the X-ray band. A suggested post-break decay slope of αopt ∼
1.1 (De Pasquale et al. 2010) is very shallow when compared to
the corresponding X-ray light-curve decay (αX = 2.18 ± 0.10),
implying that the optical bands show an excess of flux at late
times (Corsi et al. 2010; De Pasquale et al. 2010; He et al. 2011;
Kumar & Barniol Duran 2010; Panaitescu 2011).

At first we note that the steep decay of the optical flux seen
by GROND (αopt = 2.37±0.29; Sect. 3.1) cannot be explained as
pre-jet break evolution. In our data base of afterglow light curves
with a well-observed pre- and post-jet break evolution (Kann
et al. 2010, 2011), we do not have a single case where the pre-
break decay slope is as steep as that. We conclude that at the time
when the optical afterglow was monitored by GROND the jet-
break had already occurred, and the evolution of the afterglow
was in the post-jet break decay phase, confirming the finding of
De Pasquale et al. (2010) based on the X-ray light curve. Second,
in the GROND g′r′i′z′ light curve data there is no evidence of
any break, and the decay is achromatic. The UVOT data then
show (De Pasquale et al. 2010, their Fig. 1) that a break must
have occurred shortly before GROND started observing.

Using the data published in De Pasquale et al. (2010), we fit-
ted the UVOT white-band magnitudes again. At first we assumed
a double-broken power law (for the procedure see Schulze et al.
2011) with fixed break times at tb1 = 1.4 ks (based on the X-ray
data, De Pasquale et al. 2010) and tb2 = 22 ks. Using a smooth-
ing parameter of n1 = n2 = 10.0 (see Beuermann et al. 1999) for
the first and second breaks, respectively, and a late-time decay
slope of α3 = 2.4 (Sect. 3.1), this gives an early-time slope of
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Fig. 3. Swift/XRT (Evans et al. 2007) to optical/NIR (GROND) spectral
energy distribution of the afterglow of GRB 090510 at t = 31 ks after
the burst. The inset shows the βopt vs. Ahost

V plane, constraining their
corresponding error bars. Filled triangles refer to the GROND-observed
NIR upper limits (J = 22.2, H = 21.6, and Ks = 21.0), filled circles to
the observed optical magnitudes (g′, r′, i′, z′).

α1 = −0.2 ± 0.2 and α2 = 0.8 ± 0.1 (Fig. 4, blue dashed line). A
relatively sharp break at tb2 is required (defined by n2) since the
GROND data do not show evidence of any curvature in the light
curve (Fig. 2). The UVOT two data points at 18 ks and 100 ks are
strong outliers, however5. This solution suggests we interpret α2
as a normal pre-jet break decay slope. There is, however, no clear
evidence of a corresponding (i.e., achromatic) break in the X-ray
light curve, contradicting this interpretation and in this way not
affecting the generally excepted idea of a jet break time already
around 1.4 ks after the burst (Corsi et al. 2010; De Pasquale et al.
2010; He et al. 2011; Kumar & Barniol Duran 2010; Panaitescu
2011).

Another approach for fitting the UVOT data is suggested by
a model discussed by De Pasquale et al. (2010) and Kumar &
Barniol Duran (2010). When interpreting the XRT/UVOT data,
these authors point out that the flat UVOT light curve decay for
t � 1 ks (αopt ∼ 1.1) can be understood if, at the time when
UVOT was observing, the injection frequency was (still) above
the optical bands (νopt < νm) and the afterglow was in the post-
jet-break phase. While theoretically this suggests a decay slope
of α = 1/3 (e.g., Zhang & Mészáros 2004), these authors ar-
gue that possibly the crossing of νm through the UVOT bands
affected the measured decay slope, making it flatter. In addition,
these authors note that the UVOT light curve does not show ev-
idence of any steepening to a decay slope with α = p, where
p is the power-law index of the electron distribution function, a
steepening that is expected once νm has passed through the opti-
cal bands. The GROND data now suggest re-evaluating this idea,
since the expected steepening to α = p is indeed seen in the data
but was originally not clearly evident in the sparse UVOT data
set.

When following this model, a possible fit of the UVOT data
with a double-broken power law is also shown in Fig. 4 (gray
line). It uses fixed α1 = −0.2, α2 = 1/3, and α3 = 2.4, fixed
break times as mentioned before, as well as n1 = n2 = 10. While
this fit underpredicts the UVOT optical flux for t < 2 ks by a

5 In the second night GROND was observing between 116 ks and
122 ks after the burst. We do not see evidence of rebrightening.
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Fig. 4. Best fit of the UVOT white-band data (black triangles, taken from
De Pasquale et al. 2010, their Fig. 1) for two models that require a
second break in the UVOT light curve at 22 ks (see Sect. 3.3). Also
shown are the X-ray data, shifted in flux density by a factor of 104.
The two vertical lines highlight the time interval in which GROND was
observing.

factor of ∼2, for t > 2 ks it reasonable agrees with the observa-
tional data. In particular, there is no more evidence of any excess
of flux in the UVOT bands at late times (except for the UVOT
data point at 100 ks; see footnote #5). Clearly, the underpredic-
tion of the optical flux at very early times is a shortcoming of
this approach. It remains open whether the very early optical
flux could have been affected by rebrightening episodes, simi-
lar to what has been seen in, e.g., the afterglow of GRB 080928
(Rossi et al. 2011).

Is the second light curve break definitely caused by the pas-
sage of νm across the optical bands? At least one shortcoming of
this interpretation could be that, if νm ∼ 3 eV at t = 20 ks, then
this predicts a relatively high value for the injection frequency at
very early times, notably higher than suggested by detailed nu-
merical models of the afterglow (Kumar & Barniol Duran 2010).
This issue cannot be solved here. On the other hand, if the sec-
ond light-curve break were the classical jet break, this would call
for a complete re-evaluation of the afterglow parameters, and we
would be confronted with the problem of a very sparse X-ray
data set around t = 20 ks, which would make such an approach
even more speculative.

4. Summary and conclusions

We have presented GROND multichannel data of the optical af-
terglow of GRB 090510 obtained between 22 ks and 36 ks after
the burst. These data suggest that, while GROND was observing,
the afterglow was in the post-jet break decay phase with a slope
of α ∼ 2.4. In combination with Swift/UVOT data, this implies
that, in addition to a break at 1.4 ks, a second break occurred in
the optical light curve around 22 ks after the burst. The lack of
any evidence of a corresponding break in the X-ray light curve
at 22 ks disfavors the idea that this is a jet break. Following the
discussion in De Pasquale et al. (2010) and Kumar & Barniol
Duran (2010), this second break could be understood however

as the passage of the injection frequency νm across the optical
bands, when the afterglow was in the post-jet break decay phase.
Furthermore, we find that the GROND data resolve the original
issue of a potential excess of flux in the optical bands at late
times. The late-time decay slope in the optical bands after 22 ks
(i.e., after the passage of νm) is, within the errors, identical to the
slope of the X-ray light curve, as expected for a post-jet break
evolution. We conclude that there is no longer any evidence of
an excess of flux in the optical bands at late times. After 22 ks,
the evolution of the afterglow was achromatic from the optical
to the X-ray band.
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Appendix A: Afterglow photometry

Table A.1. Log of the GROND observations, given in the AB system.

Time (s) g′ r′ i′ z′

22 299 – 22.01 ± 0.38 – 21.73 ± 0.56
22 401 – – – 21.27 ± 0.40
22 503 – 22.09 ± 0.38 – –
22 609 – – 21.85 ± 0.40 21.41 ± 0.40
22 743 – 22.29 ± 0.33 – 21.45 ± 0.28
22 931 – 22.89 ± 0.57 22.16 ± 0.38 –
23 127 22.88 ± 0.56 22.73 ± 0.51 21.86 ± 0.35 –
23 313 – 22.91 ± 0.53 21.81 ± 0.34 –
23 639 22.90 ± 0.36 – 22.35 ± 0.31 22.09 ± 0.32
24 093 – 23.03 ± 0.29 22.18 ± 0.20 22.40 ± 0.45
24 540 – 22.49 ± 0.20 22.79 ± 0.45 –
24 984 22.88 ± 0.33 22.86 ± 0.31 22.53 ± 0.33 22.50 ± 0.36
25 443 – 22.62 ± 0.23 22.86 ± 0.39 –
25 889 23.07 ± 0.29 22.77 ± 0.24 22.98 ± 0.41 22.95 ± 0.45
26 335 23.45 ± 0.43 23.09 ± 0.32 – 21.95 ± 0.23
26 780 23.86 ± 0.50 22.71 ± 0.24 23.14 ± 0.27 –
27 234 23.54 ± 0.37 23.05 ± 0.25 22.50 ± 0.20 22.55 ± 0.29
27 679 23.41 ± 0.27 23.26 ± 0.21 22.58 ± 0.18 –
28 125 23.61 ± 0.33 23.23 ± 0.25 22.81 ± 0.26 22.88 ± 0.37
28 569 – 23.07 ± 0.24 22.76 ± 0.27 22.63 ± 0.31
29 024 23.52 ± 0.35 23.30 ± 0.31 22.84 ± 0.26 22.26 ± 0.24
29 475 23.43 ± 0.31 23.17 ± 0.25 22.97 ± 0.29 22.77 ± 0.40
29 922 – 23.19 ± 0.23 22.99 ± 0.33 –
30 375 – 23.11 ± 0.21 23.03 ± 0.29 22.98 ± 0.40
30 831 – 23.01 ± 0.20 22.91 ± 0.30 22.96 ± 0.46
31 275 23.70 ± 0.32 23.19 ± 0.23 23.23 ± 0.22 –
31 725 23.77 ± 0.34 23.25 ± 0.23 23.08 ± 0.20 22.56 ± 0.23
32 170 23.91 ± 0.31 23.48 ± 0.29 23.58 ± 0.41 –
32 628 23.75 ± 0.33 23.38 ± 0.25 23.01 ± 0.28 23.18 ± 0.46
33 077 23.50 ± 0.21 23.67 ± 0.30 23.26 ± 0.29 23.01 ± 0.29
33 524 – 23.52 ± 0.27 22.99 ± 0.15 –
34 369 24.46 ± 0.57 23.51 ± 0.26 23.83 ± 0.52 –
34 815 24.19 ± 0.31 24.07 ± 0.46 – –
35 270 23.90 ± 0.31 23.74 ± 0.32 23.23 ± 0.29 23.44 ± 0.43
35715 24.21 ± 0.43 – 23.90 ± 0.57 23.11 ± 0.41

Notes. Data are not corrected for Galactic extinction.
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